GLOBAL SPENDING ON NUCLEAR DISARMSMENT VERIFICATION WORK

TOM MILNE
VERTIC is the Verification Research, Training and Information Centre, an independent, non-profit making, non-governmental organisation. Its mission is to promote effective and efficient verification as a means of ensuring confidence in the implementation of international agreements and intra-national agreements with international involvement. VERTIC aims to achieve its mission through research, training, dissemination of information, and interaction with the relevant political, diplomatic, technical, scientific and non-governmental communities.

International Verification Consultants Network

Richard Butler AO (arms control and disarmament verification); Dr Roger Clark (seismic verification); Dr Jozef Goldblat (arms control and disarmament agreements); Dr Patricia Lewis (arms control and disarmament agreements); Peter Marshall OBE (seismic verification); Robert Mathews (chemical and biological disarmament); Dr Colin McInnes (Northern Ireland decommissioning); Dr Graham Pearson (chemical and biological disarmament); Dr Arian Pregenzer (cooperative monitoring); Dr Rosalind Reeve (environmental law).

Funders Ford Foundation, Joseph Rowntree Charitable Trust, W. Alton Jones Foundation and the Diana, Princess of Wales Memorial Fund.

Board of Directors Dr Owen Greene (Chair); Gen. Sir Hugh Beach GBE KCB MC; Lee Chadwick MA; Joy Hyvarinen, LLM, LLM; Dr Bhupendra Jasani; Susan Willett BA (hons), MPhil.

Series editor Trevor Findlay

Sub-editor Eve Johansson

Design and production Richard Jones

The Verification Research, Training and Information Centre (VERTIC), Baird House, 15–17 St. Cross Street London ECIN 8UW, United Kingdom

Phone +44.(0)20.7440.6960
Fax +44.(0)20.7242.3266
E-mail info@vertic.org
Website www.vertic.org

Printed in the United Kingdom by Corporate and Commercial Printing (CCP) Limited
5–8 Helmet Row, London ECIV 3QJ

ISSN 1474-8045 © VERTIC 2002
Foreword and acknowledgements ... 5

Acronyms ... 7

Introduction .. 9

Nuclear arms control and disarmament R&D in the US .. 11

Nuclear arms control and disarmament R&D worldwide .. 23

Verifying nuclear weapon reductions .. 23

Global nuclear materials management .. 27

Nuclear test monitoring ... 35

Summary .. 43

Determining appropriate levels of expenditure on nuclear arms control and disarmament research .. 45

The role of technology in verification .. 46

Technology needs .. 47

The side-benefits of technical work on arms control and disarmament .. 49

International dimensions .. 49

R&D at national weapons laboratories .. 49

International co-operation among nuclear weapon scientists .. 50

MPC&A in the former Soviet Union .. 51

Niche arms control programmes .. 51

Independent centres for nuclear arms control R&D ... 52

Diminishing returns from research ... 52

Treaty definition and implementation ... 54

Conclusion ... 55

Endnotes .. 57
Foreword and acknowledgements

I would like to acknowledge helpful comments on the draft of this report which I received from Jürgen Altmann, Maurice Bryson, Leslie Casey, Trevor Findlay, Oliver Meier and Jill Warren. Naturally, responsibility for the content of the report is mine alone.

Although I believe that the picture presented in this report is a fair reflection of the overall situation, it is inevitable that some of the data may be incomplete, inaccurate or unbalanced. I would be glad to receive comments, through VERTIC, from practitioners in the field and interested readers, with a view to a possible revision and updating of the report.
Acronyms

Atomic Weapons Establishment (uk)
AWE

Federal Institute for Geosciences Natural Resources (Germany)
BGR

Brookhaven National Laboratory
BNL

Chemical and Biological Weapons
CBW

Commissariat à L’Énergie Atomique
CEA

Comprehensive Nuclear Test Ban Treaty (1996)
CTBT

Comprehensive Nuclear Test Ban Treaty Organization
CTBTO

Cooperative Threat Reduction
CTR

Defense Advanced Research Projects Agency (us)
DARPA

Department of Defense (us)
DOD

Department of Energy (us)
DOE

European Atomic Energy Community
Euratom

Fiscal Year
FY

Highly-Enriched Uranium
HEU

International Atomic Energy Agency
IAEA

International Data Centre
IDC

International Monitoring System (under the CTBT)
IMS
<table>
<thead>
<tr>
<th>Term</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initiatives for Proliferation Prevention</td>
<td>IPP</td>
</tr>
<tr>
<td>Los Alamos National Laboratory</td>
<td>LANL</td>
</tr>
<tr>
<td>Low-Enriched Uranium</td>
<td>LEU</td>
</tr>
<tr>
<td>Lawrence Livermore National Laboratory</td>
<td>LLNL</td>
</tr>
<tr>
<td>Mixed Oxide</td>
<td>MOX</td>
</tr>
<tr>
<td>Material Protection, Control and Accounting</td>
<td>MPC&A</td>
</tr>
<tr>
<td>Member State Support Programme (IAEA)</td>
<td>MSSP</td>
</tr>
<tr>
<td>National Data Centre</td>
<td>NDC</td>
</tr>
<tr>
<td>Nuclear Explosion Monitoring Research and Engineering Programme</td>
<td>NEM</td>
</tr>
<tr>
<td>Non-Governmental Organisation</td>
<td>NGO</td>
</tr>
<tr>
<td>National Nuclear Security Administration (US)</td>
<td>NNSA</td>
</tr>
<tr>
<td>Nonproliferation and Arms Control</td>
<td>NPAC</td>
</tr>
<tr>
<td>Non-Proliferation and Arms Control Technology Working Group</td>
<td>NPAC TWG</td>
</tr>
<tr>
<td>Nuclear Non-Proliferation Treaty (1968)</td>
<td>NPT</td>
</tr>
<tr>
<td>National Technical Means</td>
<td>NTM</td>
</tr>
<tr>
<td>Provisional Technical Secretariat (of the CTBTO)</td>
<td>PTS</td>
</tr>
<tr>
<td>Russian American Nuclear Security Advisory Council</td>
<td>RANSAC</td>
</tr>
<tr>
<td>Research and Development</td>
<td>R&D</td>
</tr>
<tr>
<td>Research, Development, Testing and Evaluation</td>
<td>RDT&E</td>
</tr>
<tr>
<td>Strategic Arms Reduction Treaty</td>
<td>START</td>
</tr>
<tr>
<td>Weapons of Mass Destruction</td>
<td>WMD</td>
</tr>
</tbody>
</table>
Introduction

It is sometimes argued that advances in the technologies and techniques that are vital for implementing and verifying nuclear arms reductions would facilitate the political decisions necessary to achieve deep cuts in nuclear weapons and, ultimately, the creation of a nuclear weapon-free world.¹ To assess the scope for such advances being made in the near future, it is useful to survey current worldwide patterns of expenditure on verification and related research and development (R&D). The scale, geographical location, organisation and technical objectives of existing work will help suggest where opportunities lie for reform or expansion of efforts worldwide.

Even allowing a broad definition of relevant work—say, ‘verification and other aspects of nuclear arms control, nonproliferation and disarmament’—there is ambiguity over whether certain areas of research, or particular government or institutional programmes, should count as verification and arms control expenditure or be considered part of a more general ‘national security’ budget. Indeed, even in cases where expenditure on monitoring technologies can be tied directly to a requirement to monitor compliance with an arms control treaty, it may be that some countries would want to obtain the same kind of information for national security purposes regardless of the specific treaty context. Clearly, there is no simple means of classifying such R&D, since it has applicability to arms control and to broader national security interests. This caveat does not, however, obscure the scale of the resources spent on scientific and technical work bearing on nuclear arms control and disarmament or the main thrusts of this work.
A cursory look at the field shows that the greater part by far of the global total of such scientific and technical work—probably more than 90 percent—is performed in the US. The work is funded from a variety of sources and spread among a great many establishments, with the largest programmes located at the national nuclear weapon laboratories. The first part of this paper looks at the main components and objectives of US-based work.

Russia, China, France and the UK, the other nuclear weapon states recognised as such by the 1968 Nuclear Non-Proliferation Treaty (NPT), also support at least some relevant work, as do a number of other countries either in connection with civil nuclear power programmes or as part of their involvement in multilateral arms control. This worldwide body of work is described in the second part of this report. Because negotiating and verifying nuclear disarmament is likely to be an international enterprise, more detail is given about some of the non-US-based work than is warranted by the size and objectives of the actual activity.

The overall picture is one of very uneven patterns of expenditure, especially as between the US and the rest of the world. This raises the question how a country might decide on judicious levels of investment in this field—a complex issue briefly discussed in the final section of this study.